login
A304905
Greatest difference d such that both n^2 - d and n^2 + d are primes.
3
1, 4, 13, 22, 31, 30, 45, 76, 97, 118, 139, 162, 193, 218, 253, 282, 319, 358, 397, 436, 453, 522, 553, 612, 645, 724, 765, 828, 889, 918, 1005, 1072, 1153, 1222, 1283, 1362, 1413, 1516, 1587, 1678, 1753, 1842, 1917
OFFSET
2,2
FORMULA
a(n) = (A304904(n) - A304903(n))/2 = n^2 - A304903(n) = A304904(n) - n^2.
EXAMPLE
a(2) = 1 because 2^2 - 1 = 3 and 2^2 + 1 = 5 are primes.
a(7) = 30 because 7^2 - 30 = 19 and 7^2 + 30 = 79 is the pair with maximum difference. All greater differences lead to at least one composite, i.e., 49 + 32 = 81, 49 - 34 = 15, 49 + 36 = 85, 49 + 38 = 87, 49 - 40 = 9, 49 + 42 = 91 = 7*13, 49 + 44 = 93 = 3*31, 49 + 46 = 95, and 49 - 48 = 1 is not a prime.
PROG
(PARI) a304903(n) = forprime(p=3, , if(ispseudoprime(2*n^2-p), return(p)))
a(n) = n^2 - a304903(n) \\ Felix Fröhlich, May 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, May 20 2018
STATUS
approved