The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304886 Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n). 5
 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k. For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s. For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..8600 Michael De Vlieger, Concordance of A025487, A051282, A061394, and A304886 Michael De Vlieger, Indices of primorials whose product is highly composite Michael De Vlieger, Indices of primorials whose product is superabundant FORMULA For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019 EXAMPLE Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).    n  A025487(n)   Row n --------------------------------    1        1      0    2        2      1    3        4      1,1    4        6      2    5        8      1,1,1    6       12      1,2    7       16      1,1,1,1    8       24      1,1,2    9       30      3   10       32      1,1,1,1,1   11       36      2,2   12       48      1,1,1,2   13       60      1,3   14       64      1,1,1,1,1,1   15       72      1,2,2   16       96      1,1,1,1,2   17      120      1,1,3   18      128      1,1,1,1,1,1,1   19      144      1,1,2,2   20      180      2,3   ... MATHEMATICA (* Simple (A025487(n) < 10^5): *) {{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ] (* Efficient (A025487(n) < 10^23): *) f[n_] := Block[{ww, g, h},   g[x_] := Apply[Times,     MapIndexed[Prime[First@ #2]^#1 &, x]];   h[x_] := Reverse@     Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];   ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +      Length@ NestWhileList[NextPrime@ # &, 1,      Times @@ {##} <= n &, All] ];   Map[h, SortBy[Flatten[#, 1], g]] &@    Map[Block[{w = #, k = 1},       Apply[          Join, {{ConstantArray[1, Length@ w]},            If[Length@ # == 0, #, #[[1]]] }] &@ Reap[          Do[           If[# < n,             Sow[w]; k = 1,              If[k >= Length@ w, Break[], k++]] &@                g@ Set[w,                If[k == 1,                  MapAt[# + 1 &, w, k],                  PadLeft[#, Length@ w, First@ #] &@                    Drop[MapAt[# + Boole[i > 1] &, w, k],                     k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400 CROSSREFS Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815. Cf. also A307056. Sequence in context: A296081 A074064 A275215 * A295632 A139549 A216915 Adjacent sequences:  A304883 A304884 A304885 * A304887 A304888 A304889 KEYWORD nonn,tabf AUTHOR Michael De Vlieger, May 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 06:10 EDT 2020. Contains 336422 sequences. (Running on oeis4.)