login
A304877
G.f.: Sum_{k>=0} q(k)^2 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).
7
1, 0, 0, 2, 0, 4, 4, 8, 4, 20, 20, 28, 38, 52, 80, 128, 128, 176, 300, 316, 476, 648, 832, 972, 1428, 1720, 2340, 3014, 3844, 4588, 6556, 7476, 9760, 12588, 15596, 19480, 25140, 29796, 37728, 47604, 58140, 70856, 90148, 107692, 133228, 167284, 198692, 242728
OFFSET
0,4
LINKS
FORMULA
a(n) ~ sqrt(3) * exp(Pi*sqrt(n)) / (2^(11/2) * n^(3/2)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 20 2018
STATUS
approved