login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304826 a(n) = 32*7^n/21 - 8/3, n>=1. 4
8, 72, 520, 3656, 25608, 179272, 1254920, 8784456, 61491208, 430438472, 3013069320, 21091485256, 147640396808, 1033482777672, 7234379443720, 50640656106056, 354484592742408, 2481392149196872, 17369745044378120, 121588215310646856, 851117507174528008, 5957822550221696072 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the number of vertices in the crystal structure cubic carbon CCC(n), defined in the Baig et al. and in the Gao et al. references.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

A. Q. Baig, M. Imran, W. Khalid, and M. Naeem, Molecular description of carbon graphite and crystal cubic carbon structures, Canadian J. Chem., 95, 674-686, 2017.

W. Gao, M. K. Siddiqui, M. Naeem and N. A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures, Molecules, 22, 1496, 1-12, 2017.

Index entries for linear recurrences with constant coefficients, signature (8,-7).

FORMULA

From Colin Barker, May 19 2018: (Start)

G.f.: 8*x*(1 + x) / ((1 - x)*(1 - 7*x)).

a(n) = 8*a(n-1) - 7*a(n-2) for n>2.

(End)

MAPLE

seq(32*7^n*(1/21)-8/3, n = 1 .. 25);

MATHEMATICA

Rest@ CoefficientList[Series[8 x (1 + x)/((1 - x) (1 - 7 x)), {x, 0, 22}], x] (* or *)

LinearRecurrence[{8, -7}, {8, 72}, 22] (* or *)

Array[32*7^#/21 - 8/3 &, 22] (* Michael De Vlieger, May 20 2018 *)

PROG

(PARI) Vec(8*x*(1 + x) / ((1 - x)*(1 - 7*x)) + O(x^30)) \\ Colin Barker, May 19 2018

(GAP) List([1..30], n->32*7^n/21-8/3); # Muniru A Asiru, May 19 2018

CROSSREFS

Cf. A304827.

Sequence in context: A271028 A180288 A082141 * A270241 A054615 A111919

Adjacent sequences:  A304823 A304824 A304825 * A304827 A304828 A304829

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, May 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 14:39 EDT 2019. Contains 325106 sequences. (Running on oeis4.)