%I #26 Sep 08 2022 08:46:21
%S 7,23,53,83,103,107,139,181,197,199,223,227,239,257,277,281,313,373,
%T 397,401,431,487,509,547,571,587,661,683,691,719,761,857,877,919,953,
%U 977,1009,1031,1039,1051,1069,1093,1097,1109,1151,1213,1283,1301,1321,1399,1499
%N Primes congruent to {7, 16, 20, 23, 24, 25} mod 29.
%H Muniru A Asiru, <a href="/A304724/b304724.txt">Table of n, a(n) for n = 1..2000</a>
%H Wanlin Li, Elena Mantovan, Rachel Pries, and Yunqing Tang, <a href="https://arxiv.org/abs/1805.04598">Newton Polygons of cyclic covers of the projective line branched at three points</a>, arXiv:1805.04598.[math.NT], 2018 (see Example 3.9, page 8).
%p select(isprime,select(n->modp(n,29)=7 or modp(n,29)=16 or modp(n,29)=20 or modp(n,29)=23 or modp(n,29)=24 or modp(n,29)=25,[$1..1500])); # _Muniru A Asiru_, Jun 03 2018
%t Select[Prime[Range[250]], MemberQ[{7, 16, 20, 23, 24, 25}, Mod[#, 29]]&]
%o (Magma) [p: p in PrimesUpTo(1500) | p mod 29 in [7,16,20,23,24,25]];
%o (PARI) is(n) = ispseudoprime(n) && #setintersect([7, 16, 20, 23, 24, 25], Set(lift(Mod(n, 29))))==1 \\ _Felix Fröhlich_, May 25 2018
%Y Cf. A000040, A005384, A005385.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, May 25 2018