login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304716 Number of integer partitions of n whose distinct parts are connected. 67
1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 3, 15, 4, 18, 12, 25, 11, 41, 17, 54, 36, 72, 44, 113, 69, 145, 113, 204, 153, 302, 220, 394, 343, 541, 475, 771, 662, 1023, 968, 1398, 1314, 1929, 1822, 2566, 2565, 3440, 3446, 4677, 4688, 6187, 6407, 8216, 8544, 10975, 11436 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

LINKS

Table of n, a(n) for n=1..55.

FORMULA

For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018

EXAMPLE

The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following.

                     (12): {{1,1,2}}

                    (6 6): {{1,2},{1,2}}

                    (8 4): {{1,1,1},{1,1}}

                    (9 3): {{2,2},{2}}

                   (10 2): {{1,3},{1}}

                  (4 4 4): {{1,1},{1,1},{1,1}}

                  (6 3 3): {{1,2},{2},{2}}

                  (6 4 2): {{1,2},{1,1},{1}}

                  (8 2 2): {{1,1,1},{1},{1}}

                (3 3 3 3): {{2},{2},{2},{2}}

                (4 4 2 2): {{1,1},{1,1},{1},{1}}

                (6 2 2 2): {{1,2},{1},{1},{1}}

              (4 2 2 2 2): {{1,1},{1},{1},{1},{1}}

            (2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}}

(1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}

MATHEMATICA

zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];

Table[Length[Select[IntegerPartitions[n], Length[zsm[Union[#]]]===1&]], {n, 30}]

CROSSREFS

Cf. A000009, A003963, A048143, A054921, A218970, A285572, A286518, A302242, A304714, A305078, A305079, A322306, A322307.

Sequence in context: A066656 A164896 A298422 * A237984 A118136 A258567

Adjacent sequences:  A304713 A304714 A304715 * A304717 A304718 A304719

KEYWORD

nonn

AUTHOR

Gus Wiseman, May 17 2018

EXTENSIONS

Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)