login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304677 Total number of tilings of Ferrers-Young diagrams using dominoes and monominoes summed over all partitions of n. 2
1, 1, 4, 9, 27, 60, 170, 377, 996, 2288, 5715, 13002, 32321, 72864, 175137, 400039, 943454, 2133159, 4993737, 11236889, 25995341, 58480330, 133650880, 299347432, 681346296, 1519116099, 3427954877, 7631479391, 17122129103, 37958987956, 84819325972, 187405201004 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..31.

Eric Weisstein's World of Mathematics, Ferrers Diagram

Wikipedia, Domino

Wikipedia, Domino tiling

Wikipedia, Ferrers diagram

Wikipedia, Partition (number theory)

Wikipedia, Polyomino

Wikipedia, Young tableau, Diagrams

MAPLE

h:= proc(l, f) option remember; local k; if min(l[])>0 then

     `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))

    else for k from nops(l) while l[k]>0 by -1 do od; h(subsop(k=1, l), f)+

        `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+

        `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)

      fi

    end:

g:= l-> `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))):

b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)

                  +b(n-i, min(n-i, i), [l[], i])):

a:= n-> b(n$2, []):

seq(a(n), n=0..23);

CROSSREFS

Cf. A304662, A304680.

Sequence in context: A099615 A114618 A067758 * A214418 A164342 A034527

Adjacent sequences:  A304674 A304675 A304676 * A304678 A304679 A304680

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 17:55 EST 2019. Contains 329979 sequences. (Running on oeis4.)