%I #19 May 16 2018 09:55:08
%S 1,0,3,19,101,501,2486,12398,62329,315436,1605330,8207552,42124368,
%T 216903051,1119974861,5796944342,30068145889,156250892593,
%U 813310723907,4239676354631,22130265931880,115654632452514,605081974091853,3168828466966365,16610409114771876,87141919856550506
%N a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.
%C Number of partitions of n into 2 or more parts of n kinds. - _Ilya Gutkovskiy_, May 16 2018
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724... and c = 0.268015212710733315686... - _Vaclav Kotesovec_, May 16 2018
%t Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
%t Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]
%Y Cf. A000065, A008485, A022567, A093160, A270913, A285927, A285928, A286653, A296044, A296162, A296163, A304626.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, May 15 2018