login
A304609
a(n) = 114*n - 20.
3
94, 208, 322, 436, 550, 664, 778, 892, 1006, 1120, 1234, 1348, 1462, 1576, 1690, 1804, 1918, 2032, 2146, 2260, 2374, 2488, 2602, 2716, 2830, 2944, 3058, 3172, 3286, 3400, 3514, 3628, 3742, 3856, 3970, 4084, 4198, 4312, 4426, 4540
OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the polymer B[n,1], defined pictorially in the Bodroža-Pantić et al. reference (Fig. 4).
a(n) is the first Zagreb index of the polymer B[n,2], defined pictorially in the Bodroža-Pantić et al. reference (Fig. 4).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of B[n,1] is M(B[n,1]; x,y) = 2*(2*n+1)*x^2*y^2 + 4*(n+1)*x^2*y^3 + (13*n-8)*x^3*y^3.
The M-polynomial of B[n,2] is M(B[n,1]; x,y) = 2*(n+2)*x^2*y^2 + 8*n*x^2*y^3 + (11*n-6)*x^3*y^3.
LINKS
O. Bodroža-Pantić, I. Gutman, and S. J. Cyvin, Algebraic structure count of some non-benzenoid conjugated polymers, ACH - Models in Chemistry, 133 (1-2), 27-41, 1996.
E. Deutsch and Sandi Klavžar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Colin Barker, May 17 2018: (Start)
G.f.: 2*x*(47 + 10*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
MAPLE
seq(114*n-20, n = 1 .. 40);
MATHEMATICA
114*Range[100] - 20 (* Paolo Xausa, Jul 31 2024 *)
PROG
(PARI) a(n) = 114*n - 20; \\ Altug Alkan, May 16 2018
(PARI) Vec(2*x*(47 + 10*x) / (1 - x)^2 + O(x^40)) \\ Colin Barker, May 17 2018
(GAP) List([1..80], n->114*n-20); # Muniru A Asiru, May 17 2018
CROSSREFS
Sequence in context: A050965 A044426 A044807 * A116109 A107412 A115996
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 16 2018
STATUS
approved