This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304608 a(n) = 288*2^n + 178 (n >= 1). 4

%I

%S 754,1330,2482,4786,9394,18610,37042,73906,147634,295090,590002,

%T 1179826,2359474,4718770,9437362,18874546,37748914,75497650,150995122,

%U 301990066,603979954,1207959730,2415919282,4831838386,9663676594,19327353010,38654705842,77309411506,154618822834,309237645490,618475290802

%N a(n) = 288*2^n + 178 (n >= 1).

%C a(n) is the second Zagreb index of the nanostar dendrimer G[n] from the Ashrafi et al. reference.

%C The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.

%C The M-polynomial of G[n] is M(G[n]; x,y) = 4*x*y^4 + (18*2^n + 21)*x^2*y^2 + (36*2^n - 9)*x^2*y^3 + 3*x^2*y^4 + 9*x^3*y^4.

%H Colin Barker, <a href="/A304608/b304608.txt">Table of n, a(n) for n = 1..1000</a>

%H A. R. Ashrafi, A. Karbasioun, and M. V. Diudea, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match65/n1/match65n1_193-200.pdf">Computing Wiener and detour indices of a new type of nanostar dendrimers</a>, MATCH Commun. Math. Comput. Chem. 65, 2011, 193-200.

%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F From _Michael De Vlieger_, May 16 2018: (Start)

%F G.f.: 2*x*(377 - 466*x)/(1 - 3*x + 2*x^2).

%F a(n) = 3*a(n - 1) - 2*a(n - 2) for n > 2. (End)

%p seq(288*2^n+178, n = 1 .. 40);

%t CoefficientList[Series[2 (377 - 466 x)/(1 - 3 x + 2 x^2), {x, 0, 30}], x] (* or *)

%t LinearRecurrence[{3, -2}, {754, 1330}, 31] (* or *)

%t Array[288*2^# + 178 &, 31] (* _Michael De Vlieger_, May 16 2018 *)

%o (PARI) a(n) = 288*2^n + 178; \\ _Altug Alkan_, May 15 2018

%o (PARI) Vec(2*x*(377 - 466*x)/(1 - 3*x + 2*x^2) + O(x^40)) \\ _Colin Barker_, May 23 2018

%o (GAP) List([1..40],n->288*2^n+178); # _Muniru A Asiru_, May 16 2018

%Y Cf. A304605, A304606, A304607.

%K nonn,easy

%O 1,1

%A _Emeric Deutsch_, May 15 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)