login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304606 a(n) = 54*2^n + 28 (n >= 1). 4
136, 244, 460, 892, 1756, 3484, 6940, 13852, 27676, 55324, 110620, 221212, 442396, 884764, 1769500, 3538972, 7077916, 14155804, 28311580, 56623132, 113246236, 226492444, 452984860, 905969692, 1811939356, 3623878684, 7247757340, 14495514652, 28991029276, 57982058524 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the number of edges of the nanostar dendrimer G[n] from the Ashrafi et al. reference.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

A. R. Ashrafi, A. Karbasioun, and M. V. Diudea, Computing Wiener and detour indices of a new type of nanostar dendrimers, MATCH Commun. Math. Comput. Chem. 65, 2011, 193-200.

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

From Michael De Vlieger, May 16 2018: (Start)

G.f.: 4*x*(34 - 41*x)/(1 - 3*x + 2*x^2).

a(n) = 3*a(n - 1) - 2*a(n - 2) for n > 2. (End)

MAPLE

seq(54*2^n+28, n = 1 .. 40);

MATHEMATICA

CoefficientList[Series[4 (34 - 41 x)/(1 - 3 x + 2 x^2), {x, 0, 33}], x] (* or *)

LinearRecurrence[{3, -2}, {136, 244}, 34] (* or *)

Array[54*2^# + 28 &, 34] (* Michael De Vlieger, May 16 2018 *)

PROG

(PARI) a(n) = 54*2^n + 28; \\ Altug Alkan, May 15 2018

(PARI) Vec(4*x*(34 - 41*x)/(1 - 3*x + 2*x^2) + O(x^40)) \\ Colin Barker, May 23 2018

(GAP) List([1..40], n->54*2^n+28); # Muniru A Asiru, May 16 2018

CROSSREFS

Cf. A304605, A304607, A304608.

Sequence in context: A256925 A235285 A282794 * A264951 A264958 A262615

Adjacent sequences:  A304603 A304604 A304605 * A304607 A304608 A304609

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, May 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 23:39 EST 2019. Contains 329784 sequences. (Running on oeis4.)