login
A304605
a(n) = 48*2^n + 26 (n>=1).
4
122, 218, 410, 794, 1562, 3098, 6170, 12314, 24602, 49178, 98330, 196634, 393242, 786458, 1572890, 3145754, 6291482, 12582938, 25165850, 50331674, 100663322, 201326618, 402653210, 805306394, 1610612762, 3221225498, 6442450970, 12884901914, 25769803802, 51539607578, 103079215130, 206158430234
OFFSET
1,1
COMMENTS
a(n) is the number of vertices of the nanostar dendrimer G[n] from the Ashrafi et al. reference.
LINKS
A. R. Ashrafi, A. Karbasioun, and M. V. Diudea, Computing Wiener and detour indices of a new type of nanostar dendrimers, MATCH Commun. Math. Comput. Chem. 65, 2011, 193-200.
FORMULA
From Michael De Vlieger, May 16 2018: (Start)
G.f.: 2*x*(61 - 74*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n > 2. (End)
MAPLE
seq(48*2^n + 26, n = 1 .. 40);
MATHEMATICA
CoefficientList[Series[2 (61 - 74 x)/(1 - 3 x + 2 x^2), {x, 0, 31}], x] (* or *)
LinearRecurrence[{3, -2}, {122, 218}, 32] (* or *)
Array[48*2^# + 26 &, 32] (* Michael De Vlieger, May 16 2018 *)
PROG
(PARI) a(n) = 48*2^n + 26; \\ Altug Alkan, May 15 2018
(PARI) Vec(2*x*(61 - 74*x)/(1 - 3*x + 2*x^2) + O(x^40)) \\ Colin Barker, May 23 2018
(GAP) List([1..40], n->48*2^n+26); # Muniru A Asiru, May 16 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 15 2018
STATUS
approved