This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304587 A linear mapping a(n) = x + d*n of pairs of integers (x,d), where the pairs are enumerated by a number spiral along antidiagonals. 5
 0, 1, 2, -1, -4, 2, 7, 14, 7, -2, -11, -22, -11, 3, 16, 31, 48, 33, 16, -3, -22, -43, -66, -45, -22, 4, 29, 56, 85, 116, 89, 60, 29, -4, -37, -72, -109, -148, -113, -76, -37, 5, 46, 89, 134, 181, 230, 187, 142, 95, 46, -5, -56, -109, -164, -221, -280, -227, -172, -115, -56, 6, 67 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence is an alternative solution to the riddle described in the comments of A304584 without the restriction of x and d to nonnegative numbers. LINKS Rainer Rosenthal, Table of n, a(n) for n = 0..10000 EXAMPLE d:    3 |              16  28      |             /   \   \    2 |          17   7  15  27      |         /   /   \   \   \    1 |      18   8   2   6  14  26      |     /   /   /   \   \   \   \    0 |  19   9   3   0---1   5  13  25      |     \   \   \    --> --> -->   -1 |      20  10   4  12  24      |         \   \  /   /   -2 |          21  11  23      |             \   /   -3 |              22     __________________________________   x:    -3  -2  -1   0   1   2   3   4 . a(10) = -1 + 10*(-1) = -11 because the 10th position in the spiral corresponds to x = -1 and d = -1, a(15) = 1 + 15*2 = 31 because the 15th position in the spiral corresponds to x = 1 and d = 2, a(25) = 4 + 25*0 = 4 because the 25th position in the spiral corresponds to x = 4 and d = 0. MAPLE n2left := proc(n)local w, k; return floor(sqrt((n-1)/2)); end:pos2pH:=proc(n)local k, q, Q, e, E, sp; k:=n2left(n); q:=2*k^2+1; Q:=2*(k+1)^2+1; e:=n-q; E:=Q-n; if n<2 then return[n, 0]; fi; if e<=k then return[-k+e, -e]; elif e<2*k then return[-k+e, -2*k+e]; elif E<=k+1 then return[-(k+1)+E, E]; else return[E-(k+1), 2*(k+1)-E]; fi; end:WhereFlea:=proc(n) local x, d, pair; pair:=pos2pH(n); x:=pair[1]; d:=pair[2]; return x+d*n; end: seq(WhereFlea(n), n=0..62); # Rainer Rosenthal, May 28 2018 PROG (Sage) def a(n):     if n<2: return n     k = isqrt((n-1)/2)     e = n-k*(2*k+1)-1     x = e if e

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 23:03 EST 2019. Contains 320411 sequences. (Running on oeis4.)