OFFSET
0,1
COMMENTS
a(n) is the first Zagreb index of the single-defect 4-gonal nanocone CNC(4,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(4,n) is M(CNC(4,n); x,y) = 4*x^2*y^2 + 8*n*x^2*y^3 + 2*n*(3*n+1)*x^3*y^3.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
9*a(n) + 25 is a square. - Bruno Berselli, May 14 2018
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, 1, No. 1, 2011, 25-31.
A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, 4, No. 11, 2010, 1868-1870.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Colin Barker, May 14 2018: (Start)
G.f.: 8*(2 + 7*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)
MAPLE
seq((4*(n+1))*(9*n+4), n = 0 .. 40);
PROG
(PARI) a(n) = 4*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
(GAP) List([0..50], n->4*(n+1)*(9*n+4)); # Muniru A Asiru, May 14 2018
(PARI) Vec(8*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 14 2018
STATUS
approved