The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304438 Coefficient of s(y) in p(|y|), where s is Schur functions, p is power-sum symmetric functions, y is the integer partition with Heinz number n, and |y| = Sum y_i. 14
 0, 1, 1, -1, 1, -1, 1, 1, 0, -1, 1, 1, 1, -1, 0, -1, 1, 0, 1, 1, 0, -1, 1, -1, 0, -1, 0, 1, 1, 0, 1, 1, 0, -1, 0, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, -1, 0, -1, 1, 0, 1, -1, 0, -1, 0, 0, 1, 1, 0, 0, 1, 0, 1, -1, 0, 1, 0, 0, 1, 1, 0, -1, 1, 0, 0, -1, 0, -1, 1, 0, 0, 1, 0, -1, 0, -1, 1, 0, 0, 0, 1, 0, 1, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS a(1) = 0 by convention. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = (-1)^(A056239(n) - A061395(n)) if n belongs to A093641 (Heinz numbers of hooks), 0 otherwise. EXAMPLE Sum_{n > 0} p(n) = s(1) + s(2) - s(11) + s(3) - s(21) + s(4) + s(111) - s(31) + s(5) + s(211) + s(6) - s(41) - s(1111) + s(7) + s(8) + s(311) + ... MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; hookQ[n_]:=MatchQ[DeleteCases[FactorInteger[n], {2, _}], {}|{{_, 1}}]; Table[If[hookQ[n], (-1)^(Total[primeMS[n]]-Max[primeMS[n]]), 0], {n, 2, 100}] PROG (PARI) A000265(n) = (n/2^valuation(n, 2)); A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); } A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0); A304438(n) = if(1==n, 0, my(o=A000265(n)); if(((o>1)&&!isprime(o)), 0, (-1)^(A056239(n)-A061395(n)))); \\ Antti Karttunen, Sep 30 2018 CROSSREFS Cf. A000085, A056239, A082733, A093641, A124794, A124795, A153452, A296188, A296561, A300121, A305940, A317552, A317553, A317554. Sequence in context: A022932 A334812 A079421 * A168181 A324732 A164980 Adjacent sequences:  A304435 A304436 A304437 * A304439 A304440 A304441 KEYWORD sign AUTHOR Gus Wiseman, Sep 14 2018 EXTENSIONS More terms from Antti Karttunen, Sep 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)