login
A304432
Numbers n such that n^2 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).
0
5, 6, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 25, 26, 28, 29, 30, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 85, 87, 89, 90, 91, 95, 96, 97, 98, 99, 100
OFFSET
1,1
EXAMPLE
5^2 = 25 = 3^2 + 4^2; 6^2 = 3^2 + 3^3; 9^2 = 2^5 + 7^2, ...
PROG
(PARI) is(n)=for(i=2, (n^2-1)\2, ispower(i)&&ispower(n^2-i)&&return(i))) \\ For more efficiency, loop over elements of precomputed A001597\{1}.
(PARI) L=100; PP=List(); a=Set(); for(n=1, L^2, ispower(n)||next; for(i=1, #PP, issquare(n+PP[i], &m)&& m<=L&& a=setunion(a, [m])); listput(PP, n)); a
CROSSREFS
Cf. A001597 (perfect powers), A282550.
Sequence in context: A139454 A049329 A195925 * A284936 A188191 A117827
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 13 2018
STATUS
approved