login
A304419
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 23, 24, 1, 1, 82, 103, 103, 82, 1, 1, 272, 520, 835, 520, 272, 1, 1, 908, 2671, 7017, 7017, 2671, 908, 1, 1, 3076, 13876, 60245, 98568, 60245, 13876, 3076, 1, 1, 10444, 72399, 522349, 1389257, 1389257, 522349, 72399, 10444, 1
OFFSET
1,5
COMMENTS
Table starts
.1.....1......1........1..........1............1..............1
.1.....4......8.......24.........82..........272............908
.1.....8.....23......103........520.........2671..........13876
.1....24....103......835.......7017........60245.........522349
.1....82....520.....7017......98568......1389257.......19831472
.1...272...2671....60245....1389257.....32181958......755715475
.1...908..13876...522349...19831472....755715475....29251894460
.1..3076..72399..4542604..283040177..17729422188..1129111647895
.1.10444.378321.39567170.4045732942.416850100691.43720181502419
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 15] for n>17
k=4: [order 47] for n>48
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..0..0..1. .0..1..0..0. .0..1..0..1. .0..1..1..0
..1..1..1..1. .1..1..0..0. .1..1..0..0. .0..1..0..0. .1..0..0..1
..0..0..1..0. .1..0..1..1. .0..1..0..0. .1..1..1..0. .0..0..0..0
..0..0..1..1. .0..0..0..1. .0..1..0..0. .0..0..0..1. .1..0..0..1
..1..1..1..0. .1..1..0..1. .0..1..1..1. .1..1..0..1. .1..0..1..0
CROSSREFS
Column 2 is A303882.
Sequence in context: A316376 A306136 A317271 * A316244 A305954 A317215
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 12 2018
STATUS
approved