The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304394 O.g.f. A(x) satisfies: [x^n] exp( n^4 * x ) * (1 - x*A(x)) = 0 for n>0. 5
 1, 112, 76221, 152978176, 673315202500, 5508710472669120, 75300988091046198131, 1595530380622638283804672, 49561200934127182294698009969, 2161539625780059763174286300310000, 127884966535158110582342524738392563401, 9979510403062963314615799917574094659938048, 1003426348756281631241586585232930123009989117616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS INVERT transform of A304324. LINKS FORMULA a(n) = (n+1)^(4*n+4)/(n+1)! - Sum_{k=1..n} (n+1)^(4*k)/k! * a(n-k) for n>0 with a(0)=1. EXAMPLE O.g.f.: A(x) = 1 + 112*x + 76221*x^2 + 152978176*x^3 + 673315202500*x^4 + 5508710472669120*x^5 + 75300988091046198131*x^6 + ... such that the coefficient of x^n in exp(n^4*x) * (1 - x*A(x)) = 0 for n>0. PROG (PARI) /* From formula: [x^n] exp( n^4*x ) * (1 - x*A(x)) = 0 */ {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^4 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]} for(n=0, 25, print1( a(n), ", ")) CROSSREFS Cf. A304324, A304396, A107668, A107675, A304395. Sequence in context: A063409 A051366 A051363 * A210292 A270146 A184898 Adjacent sequences:  A304391 A304392 A304393 * A304395 A304396 A304397 KEYWORD nonn AUTHOR Paul D. Hanna, May 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 17:33 EDT 2020. Contains 334831 sequences. (Running on oeis4.)