login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304362 a(n) = Sum_{d|n, d = 1 or not a perfect power} mu(n/d). 11
1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The Moebius function mu is defined by mu(n) = (-1)^k if n is a product of k distinct primes and mu(n) = 0 otherwise.

Up to n = 10^7 this sequence only takes values in {-2, -1, 0, 1, 2}. Is this true in general?

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

FORMULA

a(n) = mu(n) + Sum_{d * e = n, d in A007916, e in A005117} (-1)^omega(e), where mu = A008683 and omega = A001221.

MATHEMATICA

Table[Sum[If[GCD@@FactorInteger[d][[All, 2]]===1, MoebiusMu[n/d], 0], {d, Divisors[n]}], {n, 100}]

PROG

(PARI) A304362(n) = sumdiv(n, d, if(!ispower(d), moebius(n/d), 0)); \\ Antti Karttunen, Jul 29 2018

CROSSREFS

Cf. A000005, A000961, A001221, A001597, A001694, A005117, A007916, A008683, A091050, A203025, A304326, A304327, A304364, A304365, A304369.

Sequence in context: A271102 A065803 A326072 * A230135 A205633 A252488

Adjacent sequences:  A304359 A304360 A304361 * A304363 A304364 A304365

KEYWORD

sign

AUTHOR

Gus Wiseman, May 11 2018

EXTENSIONS

More terms from Antti Karttunen, Jul 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 07:03 EST 2019. Contains 329052 sequences. (Running on oeis4.)