

A304358


Primes that are the sum of three consecutive primes == 3 (mod 4).


3



37, 53, 73, 97, 149, 173, 197, 233, 293, 337, 397, 421, 509, 569, 601, 661, 1129, 1181, 1289, 1373, 1409, 1433, 1493, 1721, 1949, 2137, 2281, 2633, 2677, 2777, 2833, 3041, 3089, 3121, 3581, 3769, 3821, 3853, 3877, 3929, 4013, 4093, 4289, 4337, 4357, 4441, 4597, 4733, 4909, 4957, 5381, 5501, 5657
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

The first three primes == 3 (mod 4) are 3, 7, 11, but 3+7+11=21 is not prime.
The second, third and fourth primes == 3 (mod 4) are 7, 11, 19, and 7+11+19=37 is prime, so a(1)=37.


MAPLE

N:= 2000: # to use primes <= N that == 1 (mod 4)
P:= select(isprime, [seq(i, i=1..N, 4)]):
select(isprime, P[1..3]+P[2..2]+P[3..1]);


MATHEMATICA

M = 2000;
P = Select[Range[3, M, 4], PrimeQ];
Select[P[[1;; 3]] + P[[2;; 2]] + P[[3;; 1]], PrimeQ] (* JeanFrançois Alcover, Apr 27 2019, from Maple *)


CROSSREFS

Cf. A002145, A304356. Subset of A002144.
Sequence in context: A101938 A060330 A302720 * A214755 A101940 A330339
Adjacent sequences: A304355 A304356 A304357 * A304359 A304360 A304361


KEYWORD

nonn


AUTHOR

J. M. Bergot and Robert Israel, May 11 2018


STATUS

approved



