login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304325 O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) / A(x) = 0 for n>0. 7
1, 1, 481, 2246281, 43087884081, 2331601789103231, 287133439746933073357, 69929721774643572422651223, 30496192503451926066104677123329, 22113985380962062942048847693898939310, 25177466100486219354624677349405490885006591, 42994825404638061265611776726882581676486680632128 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.

Equals row 5 of table A304320.

O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A304395.

Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304315.

Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) enumerates the number of connected n-state finite automata with 5 inputs.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

a(n) ~ sqrt(1-c) * 5^(5*n) * n^(4*n - 1/2) / (sqrt(2*Pi) * c^n * (5-c)^(4*n) * exp(4*n)), where c = -LambertW(-5*exp(-5)). - Vaclav Kotesovec, Aug 31 2020

EXAMPLE

O.g.f.: A(x) = 1 + x + 481*x^2 + 2246281*x^3 + 43087884081*x^4 + 2331601789103231*x^5 + 287133439746933073357*x^6 + 69929721774643572422651223*x^7 + ...

ILLUSTRATION OF DEFINITION.

The table of coefficients of x^k/k! in exp(n^5*x) / A(x) begins:

n=0: [1, -1, -960, -13471920, -1033995878400, -279781615181250000, ...];

n=1: [1, 0, -961, -13474802, -1034049771843, -279786785295370804, ...];

n=2: [1, 31, 0, -13534384, -1035725264896, -279947192760516048, ...];

n=3: [1, 242, 57603, 0, -1044001318107, -281045183102366562, ...];

n=4: [1, 1023, 1045568, 1054175056, 0, -284106842971323856, ...];

n=5: [1, 3124, 9758415, 30465809330, 93986716449725, 0, ...];

n=6: [1, 7775, 60449664, 469967719248, 3652476388472832, 28079364132086235696, 0, ...]; ...

in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^5*x ) / A(x) = 0 for n>=0.

LOGARITHMIC DERIVATIVE.

The logarithmic derivative of A(x) yields the o.g.f. of A304315:

A'(x)/A(x) = 1 + 961*x + 6737401*x^2 + 172342090401*x^3 + 11657788116175751*x^4 + 1722786509653595220757*x^5 + 489506033977061086758261063*x^6 + ... + A304315(n)*x^n +...

INVERT TRANSFORM.

1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304395:

B(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + ... + A304395(n)*x^n + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^5 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}

for(n=0, 25, print1( a(n), ", "))

CROSSREFS

Cf. A304320, A304315, A304321, A304322, A304323, A304324.

Cf. A304395.

Sequence in context: A165384 A165376 A214170 * A175536 A158329 A231395

Adjacent sequences:  A304322 A304323 A304324 * A304326 A304327 A304328

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 11:28 EST 2021. Contains 341948 sequences. (Running on oeis4.)