login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304195 Number of fully-leafed free tree-like polyominoes of size n. 2
1, 1, 2, 1, 1, 2, 12, 3, 1, 6, 74, 11, 2, 21, 408, 40, 4, 76, 2053, 148, 11, 279 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A free tree-like polyomino of size n is a connected set of n cells in the square lattice, up to translation, rotation and reflection, whose dual graph has no cycles. It is called fully-leafed when it has the maximal number of leaves over all the same sized free tree-like polyominoes.

LINKS

Table of n, a(n) for n=1..22.

Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, and Maxime Samson. Fully-leafed tree-like polyominoes and polycubes. In Combinatorial algorithms, volume 10765 of Lecture Notes of Computer Science, 28th International workshop, IWOCA 2017, Newcastle, NSW, Australia, Springer, 2018.

EXAMPLE

a(5) = 1:

.  #

. ###

.  #

a(6) = 2:

.  #   .  #

. #### . ####

.  #   .   #

a(7) = 12:

. # # . # #  .  # #  .    #  .  #    .   #

. ### . #### . ##### . ##### . ##### . #####

. # # . #    .       .  #    .  #    .  #

.

.  # # .  # # .  #   .  #   .  #   .   #

. #### . #### .  #   . ##   . ##   . #####

.  #   .   #  . #### .  ### .  ### .   #

.      .      .  #   .  #   .   #  .

CROSSREFS

Cf. A131482 (free tree-like polyominoes), A304197, A304199 (fully-leafed free tree-like polycubes in 3 and 4 dimensions resp.).

Sequence in context: A233308 A028306 A111259 * A320076 A138948 A186114

Adjacent sequences:  A304192 A304193 A304194 * A304196 A304197 A304198

KEYWORD

nonn,more

AUTHOR

Lotfi Bouallagui, May 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 09:32 EDT 2020. Contains 337289 sequences. (Running on oeis4.)