OFFSET
0,2
FORMULA
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 24*x^3 + 189*x^4 + 2199*x^5 + 33495*x^6 + 625743*x^7 + 13778469*x^8 + 348258723*x^9 + 9916111584*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)*(n+2)/2) / A(x) begins:
n=0: [1, -2, 0, -12, -105, -1434, -23877, -473730, -10881882, ...];
n=1: [1, 0, -3, -14, -129, -1656, -26850, -522918, -11853219, ...];
n=2: [1, 3, 0, -22, -180, -2088, -32219, -608565, -13504179, ...];
n=3: [1, 7, 18, 0, -255, -2937, -41739, -750711, -16140285, ...];
n=4: [1, 12, 63, 170, 0, -3996, -58877, -991308, -20341875, ...];
n=5: [1, 18, 150, 748, 2220, 0, -78435, -1401570, -27251715, ...];
n=6: [1, 25, 297, 2211, 11271, 37149, 0, -1843458, -38615364, ...];
n=7: [1, 33, 525, 5343, 38745, 207663, 758814, 0, -50361381, ...];
n=8: [1, 42, 858, 11340, 108630, 797100, 4541805, 18301950, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] (1+x)^((n+1)*(n+2)/2) / A(x) for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 3, 18, 170, 2220, 37149, 758814, 18301950, 508907970, ...]
Related triangular matrix T = A101479 begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ...
in which row n equals row (n-1) of T^(n-1) followed by '1' for n>0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m+1)/2)/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 08 2018
STATUS
approved