login
A304156
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 18, 4, 18, 0, 0, 61, 42, 42, 61, 0, 0, 209, 130, 346, 130, 209, 0, 0, 702, 464, 1767, 1767, 464, 702, 0, 0, 2381, 1722, 10182, 13279, 10182, 1722, 2381, 0, 0, 8069, 6378, 60352, 100942, 100942, 60352, 6378, 8069, 0, 0, 27330, 22939, 350540
OFFSET
1,5
COMMENTS
Table starts
.0....0.....0.......0........0..........0...........0.............0
.0....3.....5......18.......61........209.........702..........2381
.0....5.....4......42......130........464........1722..........6378
.0...18....42.....346.....1767......10182.......60352........350540
.0...61...130....1767....13279.....100942......839935.......6803634
.0..209...464...10182...100942....1100030....12806826.....145611915
.0..702..1722...60352...839935...12806826...217640633....3520683600
.0.2381..6378..350540..6803634..145611915..3520683600...80851458613
.0.8069.22939.2034140.54261600.1634366796.56360283031.1830588080314
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
k=3: [order 18] for n>19
k=4: [order 66] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..1..0. .0..1..0..1
..1..0..1..0. .1..0..1..1. .0..1..1..0. .1..0..0..1. .1..1..0..0
..1..1..1..1. .1..0..0..0. .1..0..1..0. .1..0..0..1. .0..1..1..1
..0..1..0..0. .1..0..0..1. .0..1..1..1. .1..0..0..1. .0..1..1..1
..1..0..1..1. .0..1..0..1. .1..0..1..0. .1..0..0..1. .0..1..0..0
CROSSREFS
Column 2 is A303684.
Sequence in context: A072736 A135090 A303690 * A305509 A305175 A316763
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 07 2018
STATUS
approved