login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304101 Restricted growth sequence transform of A278222(A048679(n)). 12

%I

%S 1,2,2,2,3,2,4,3,2,4,4,3,5,2,4,4,4,6,3,6,5,2,4,4,4,6,4,7,6,3,6,6,5,8,

%T 2,4,4,4,6,4,7,6,4,7,7,6,9,3,6,6,6,10,5,9,8,2,4,4,4,6,4,7,6,4,7,7,6,9,

%U 4,7,7,7,11,6,11,9,3,6,6,6,10,6,11,10,5,9,9,8,12,2,4,4,4,6,4,7,6,4,7,7,6,9,4,7,7,7

%N Restricted growth sequence transform of A278222(A048679(n)).

%C Positions of 2's is given by the positive Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, ..., that is, A000045(n) from n >= 2 onward.

%C Positions of 3's is given by Lucas numbers larger than 3: 4, 7, 11, 18, ..., that is, A000032(n) from n >= 3 onward.

%C Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A048679(n). Compare to the scatter plot of A286622.

%H Antti Karttunen, <a href="/A304101/b304101.txt">Table of n, a(n) for n = 0..65537</a>

%o (PARI)

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649

%o A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }

%o A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), A106151(n>>valuation(n, 2))<<(valuation(n, 2)-1)));

%o A048679(n) = if(!n,n,A106151(2*A003714(n)));

%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523

%o A278222(n) = A046523(A005940(1+n));

%o v304101 = rgs_transform(vector(1+up_to, n, A278222(A048679(n-1))));

%o A304101(n) = v304101[1+n];

%Y Cf. A000032, A000045, A003603, A007895, A035513, A048679, A278222, A304100, A304102, A304103, A304104, A304105.

%Y Cf. also A286622 (compare the scatter-plots).

%K nonn,look

%O 0,2

%A _Antti Karttunen_, May 13 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 15:00 EDT 2019. Contains 326106 sequences. (Running on oeis4.)