login
A304101
Restricted growth sequence transform of A278222(A048679(n)).
13
1, 2, 2, 2, 3, 2, 4, 3, 2, 4, 4, 3, 5, 2, 4, 4, 4, 6, 3, 6, 5, 2, 4, 4, 4, 6, 4, 7, 6, 3, 6, 6, 5, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 3, 6, 6, 6, 10, 5, 9, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7, 11, 6, 11, 9, 3, 6, 6, 6, 10, 6, 11, 10, 5, 9, 9, 8, 12, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7
OFFSET
0,2
COMMENTS
Positions of 2's is given by the positive Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, ..., that is, A000045(n) from n >= 2 onward.
Positions of 3's is given by Lucas numbers larger than 3: 4, 7, 11, 18, ..., that is, A000032(n) from n >= 3 onward.
Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A048679(n). Compare to the scatter plot of A286622.
LINKS
PROG
(PARI)
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
A003714(n) = { my(s=0, w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), A106151(n>>valuation(n, 2))<<(valuation(n, 2)-1)));
A048679(n) = if(!n, n, A106151(2*A003714(n)));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A278222(n) = A046523(A005940(1+n));
v304101 = rgs_transform(vector(1+up_to, n, A278222(A048679(n-1))));
A304101(n) = v304101[1+n];
CROSSREFS
Cf. also A286622 (compare the scatter-plots).
Sequence in context: A233539 A317223 A321576 * A278636 A376497 A126336
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, May 13 2018
STATUS
approved