



1, 1, 1, 2, 1, 3, 2, 1, 5, 3, 2, 4, 1, 9, 5, 3, 6, 2, 7, 4, 1, 17, 9, 5, 10, 3, 11, 6, 2, 13, 7, 4, 8, 1, 33, 17, 9, 18, 5, 19, 10, 3, 21, 11, 6, 12, 2, 25, 13, 7, 14, 4, 15, 8, 1, 65, 33, 17, 34, 9, 35, 18, 5, 37, 19, 10, 20, 3, 41, 21, 11, 22, 6, 23, 12, 2, 49, 25, 13, 26, 7, 27, 14, 4, 29, 15, 8, 16, 1, 129, 65, 33, 66, 17, 67, 34, 9, 69, 35, 18, 36, 5, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Positions of ones is given by the positive Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, ..., that is, A000045(n) from n >= 2 onward.
Positions of 2's is given by Lucas numbers larger than 3: 4, 7, 11, 18, ..., that is, A000032(n) from n >= 3 onward.
The restricted growth sequence transform of this sequence (almost certainly) is A003603.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..17710


FORMULA

a(n) = A003602(A048679(n)).
For all i, j: a(i) = a(j) => A304101(i) = A304101(j).


PROG

(PARI)
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m2); }; \\ From A072649
A003714(n) = { my(s=0, w); while(n>2, w = A072649(n); s += 2^(w1); n = fibonacci(w+1)); (s+n); }
A007814(n) = valuation(n, 2);
A000265(n) = (n/2^valuation(n, 2));
A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n1)/2)), (2^(A007814(n)1))*A106151(A000265(n))));
A048679(n) = if(!n, n, A106151(2*A003714(n)));
A003602(n) = (1+A000265(n))/2;
A304100(n) = A003602(A048679(n));


CROSSREFS

Cf. A000032, A000045, A003602, A003603, A035513, A048679, A304101.
Sequence in context: A173302 A251721 A251722 * A179314 A204927 A119441
Adjacent sequences: A304097 A304098 A304099 * A304101 A304102 A304103


KEYWORD

nonn


AUTHOR

Antti Karttunen, May 13 2018


STATUS

approved



