login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303987 Triangle read by rows: T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 =  A063007(n, k)^2, for n >= 0, k = 0..n. 1
1, 1, 4, 1, 36, 36, 1, 144, 900, 400, 1, 400, 8100, 19600, 4900, 1, 900, 44100, 313600, 396900, 63504, 1, 1764, 176400, 2822400, 9922500, 7683984, 853776, 1, 3136, 571536, 17640000, 133402500, 276623424, 144288144, 11778624, 1, 5184, 1587600, 85377600, 1200622500, 5194373184, 7070119056, 2650190400, 165636900 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The row sums of this triangle are b(n) = A005259(n), for n >= 0. This sequence b was used in R. Apéry's 1979 proof of the irrationality of Zeta(3). See A005259 for references and links.

Row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], x), hence b(n) = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], 1) (see the formula in A005259 given by K. A. Penson. This is the solution to Exercise 2.14 of the Koepf reference given there, p. 29).

LINKS

Table of n, a(n) for n=0..44.

FORMULA

T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 = A063007(n, k)^2, for n >= 0 and k = 0..n.

T(n, k) = (binomial(n+k, 2*k)*cbi(k))^2, with cbi(k) = A000984(k) = binomial(2*k, k), and cbi(k)^2 = A002894(k).

G.f. for column sequences (without leading zeros):

  cbi(k)^2*P2(2*k, x)/(1 - x)^(4*k+1), with the row polynomials of A008459 (Pascal entries squared) P2(2*k, x) = Sum_{j=0..2*k} A008459(2*k, j)*x^j. For a proof see the general comment in A288876 on the diagonals and columns of A008459.

EXAMPLE

The triangle T begins:

n\k  0    1       2        3          4          5          6          7 ...

0:   1

1:   1    4

2:   1   36      36

3:   1  144     900      400

4:   1  400    8100    19600       4900

5:   1  900   44100   313600     396900      63504

6:   1 1764  176400  2822400    9922500    7683984     853776

7:   1 3136  571536 17640000  133402500  276623424  144288144   11778624

----------------------------------------------------------------------------

row n = 8:   1 5184 1587600 85377600 1200622500 5194373184 7070119056 2650190400 165636900,

row n = 9: 1 8100 3920400 341510400 8116208100 63631071504 176752976400 169612185600 47869064100 2363904400,

row n = 10: 1 12100 8820900 1177862400 44188244100 572679643536 2828047622400 5446435737600 3877394192100 853369488400 34134779536.

...

MATHEMATICA

T[n_, k_] := (Gamma[k + n + 1]/(Gamma[k + 1]^2*Gamma[-k + n + 1]))^2;

Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Peter Luschny, May 14 2018 *)

PROG

(GAP) Flat(List([0..10], n->List([0..n], k->(Binomial(n, k)*Binomial(n+k, k))^2))); # Muniru A Asiru, May 15 2018

CROSSREFS

Cf. A000984, A002894, A005259, A008459, A063007.

The column sequences (without zeros) are A000012, A035287(n+1) = 4*A000217(n)^2, 36*A288876, 400*A000579(n+6)^2, 4900*A000581(n+8)^2, 63504*A001287(n+10)^2, ...

Sequence in context: A144267 A011801 A169656 * A297900 A298495 A193962

Adjacent sequences:  A303984 A303985 A303986 * A303988 A303989 A303990

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, May 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 23:35 EST 2019. Contains 329783 sequences. (Running on oeis4.)