login
A303978
a(n) is the smallest prime p that does not divide n-1 such that (n^p-1)/(n-1) is composite, for n > 1.
0
11, 5, 5, 5, 11, 7, 2, 3, 5, 3, 7, 11, 2, 5, 7, 13, 3, 5, 2, 7, 11, 3, 2, 5, 2, 5, 7, 3, 3, 11, 2, 5, 2, 3, 3, 5, 2, 3, 11, 7, 3, 11, 2, 3, 11, 3, 2, 5, 2, 3, 5, 3, 2, 5, 2, 5, 5, 5, 3, 11, 2, 3, 2, 3, 11, 5, 2, 5, 5, 11, 3, 11, 2, 5, 2, 7, 5, 7, 2, 3, 5, 3, 2, 11, 2, 3, 5, 5, 2
OFFSET
2,1
COMMENTS
Smallest prime p such that (n^p-1)/(n-1) is a pseudoprime to base n > 1.
If Schinzel's hypothesis H is true, then the sequence is unbounded.
b(n) = (n^a(n)-1)/(n-1) is a strong pseudoprime to base n > 1, but not necessarily the smallest, cf. A298756.
b(n): 2047, 121, 341, 781, 72559411, 137257, 9, 91, 11111, 133, ...
Indices n of records a(n) = 11, 13, 17, 19, 23, 29 are n = 2, 17, 4291, 32319, 128701, 2668576. - Robert Israel, May 04 2018
EXAMPLE
The repunit (10^5-1)/9 = 11111 = 41*271 is composite, so a(10) = 5, because (10^2-1)/9 = 11 is prime and 3 divides 9.
MAPLE
f:= proc(n) local p;
p:= 2;
while n-1 mod p = 0 or isprime((n^p-1)/(n-1)) do p:= nextprime(p) od:
p
end proc:
map(p, [$2..100]); # Robert Israel, May 04 2018
MATHEMATICA
Array[Block[{p = 2}, While[Nand[CoprimeQ[# - 1, p], CompositeQ[(#^p - 1)/(# - 1)]], p = NextPrime@ p]; p] &, 89, 2] (* Michael De Vlieger, May 06 2018 *)
PROG
(PARI) a(n) = {forprime(p=2, , if (((n-1) % p) && !isprime((n^p-1)/(n-1)), return (p)); ); } \\ Michel Marcus, May 04 2018
CROSSREFS
Cf. A298756.
Sequence in context: A131029 A033331 A229192 * A085716 A127820 A168206
KEYWORD
nonn
AUTHOR
Thomas Ordowski, May 03 2018
EXTENSIONS
More terms from Michel Marcus, May 04 2018
STATUS
approved