login
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1 + x*A(x)^2)^n - A(x) )^n.
2

%I #9 Dec 11 2018 22:48:55

%S 1,1,3,19,199,2863,51280,1087107,26492959,728234294,22273547313,

%T 750180870861,27591387247199,1100527782602563,47324815446060104,

%U 2182852921566858499,107515416285928793865,5632697086212688424650,312779421789041421062682,18351511395587408908636348,1134459736825581425674735933

%N G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1 + x*A(x)^2)^n - A(x) )^n.

%F G.f. A(x) satisfies:

%F (1) 1 = Sum_{n>=0} ( (1 + x*A(x)^2)^n - A(x) )^n.

%F (2) 1 = Sum_{n>=0} (1 + x*A(x)^2)^(n^2) / (1 + A(x)*(1 + x*A(x)^2)^n)^(n+1). - _Paul D. Hanna_, Dec 11 2018

%F G.f.: 1/x*Series_Reversion( x/F(x) ) such that 1 = Sum_{n>=0} ((1 + x*F(x))^n - F(x))^n, where F(x) is the g.f. of A303926.

%F G.f.: x/Series_Reversion( x*G(x) ) such that 1 = Sum_{n>=0} ((1 + x*G(x)^3)^n - G(x))^n, where G(x) is the g.f. of A303928.

%e G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 199*x^4 + 2863*x^5 + 51280*x^6 + 1087107*x^7 + 26492959*x^8 + 728234294*x^9 + 22273547313*x^10 + ...

%e such that

%e 1 = 1 + ((1 + x*A(x)^2) - A(x)) + ((1 + x*A(x)^2)^2 - A(x))^2 + ((1 + x*A(x)^2)^3 - A(x))^3 + ((1 + x*A(x)^2)^4 - A(x))^4 + ((1 + x*A(x)^2)^5 - A(x))^5 + ...

%o (PARI) {a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( (1 + x*Ser(A)^2)^m - Ser(A))^m ) )[#A] ); A[n+1]}

%o for(n=0,30, print1(a(n),", "))

%Y Cf. A303926, A303928.

%K nonn

%O 0,3

%A _Paul D. Hanna_, May 03 2018