login
A303915
a(n) = lambda(n)*E(n), where lambda(n) = A008836(n) and E(n) = A005361(n).
1
1, -1, -1, 2, -1, 1, -1, -3, 2, 1, -1, -2, -1, 1, 1, 4, -1, -2, -1, -2, 1, 1, -1, 3, 2, 1, -3, -2, -1, -1, -1, -5, 1, 1, 1, 4, -1, 1, 1, 3, -1, -1, -1, -2, -2, 1, -1, -4, 2, -2, 1, -2, -1, 3, 1, 3, 1, 1, -1, 2, -1, 1, -2, 6, 1, -1, -1, -2, 1, -1, -1, -6, -1, 1, -2, -2, 1, -1, -1, -4, 4, 1, -1
OFFSET
1,4
FORMULA
Multiplicative with a(p^e) = e*(-1)^e, p prime and e > 0.
Dirichlet g.f.: (zeta(2*s))^2 / (zeta(s)*zeta(3*s)).
Dirichlet convolution with A048691(n) yields A092520(n).
Dirichlet inverse b(n), n>=1, is multiplicative with b(1)=1 and for p prime and e>0: b(p^e) = 0 if e mod 3 = 0 otherwise b(p^e) = (-1)^(3 - e mod 3).
MATHEMATICA
Array[LiouvilleLambda[#] Apply[Times, FactorInteger[#][[All, -1]] ] &, 83] (* Michael De Vlieger, May 06 2018 *)
PROG
(PARI) a(n) = (-1)^bigomega(n)*factorback(factor(n)[, 2]); \\ Michel Marcus, May 05 2018
CROSSREFS
Signed version of A005361.
Sequence in context: A212180 A091050 A005361 * A322885 A292582 A008479
KEYWORD
sign,easy,mult
AUTHOR
Werner Schulte, May 02 2018
STATUS
approved