OFFSET
0,2
COMMENTS
Partial sums of A279329.
LINKS
FORMULA
a(n) ~ exp(2^(7/4) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * 3^(5/4) / (2^(15/8) * sqrt(Pi) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/8) * n^(1/8)). - Vaclav Kotesovec, May 04 2018
MAPLE
b:= proc(n, i) option remember; `if`(n<0, 0,
`if`(n=0, 1, `if`(n>i^2*(i+1)^2/4, 0, (t->
b(t, min(t, i-1)))(n-i^3)+b(n, i-1))))
end:
a:= proc(n) option remember; `if`(n<0, 0,
b(n, iroot(n, 3))+a(n-1))
end:
seq(a(n), n=0..100); # Alois P. Heinz, May 02 2018
MATHEMATICA
nmax = 91; CoefficientList[Series[1/(1 - x) Product[1 + x^k^3, {k, 1, Floor[nmax^(1/3) + 1]}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 02 2018
STATUS
approved