login
A303892
Number of nX4 0..1 arrays with every element unequal to 1, 2, 3 or 4 king-move adjacent elements, with upper left element zero.
1
2, 86, 271, 1659, 7421, 39711, 195279, 1003855, 5056641, 25707978, 130248011, 660626529, 3350327180, 16988500456, 86159495911, 436909370593, 2215734673824, 11236289992560, 56982164600014, 288968180495974, 1465423301405206
OFFSET
1,1
COMMENTS
Column 4 of A303896.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +22*a(n-2) -8*a(n-3) -131*a(n-4) +a(n-5) +153*a(n-6) -84*a(n-7) +542*a(n-8) +278*a(n-9) -1349*a(n-10) +447*a(n-11) +711*a(n-12) -308*a(n-13) +422*a(n-14) -2403*a(n-15) +1609*a(n-16) -250*a(n-17) -407*a(n-18) +3132*a(n-19) -3586*a(n-20) +3814*a(n-21) -3697*a(n-22) +375*a(n-23) +1563*a(n-24) -1317*a(n-25) +1526*a(n-26) -1386*a(n-27) +563*a(n-28) -422*a(n-29) +246*a(n-30) -59*a(n-31) +112*a(n-32) -21*a(n-33) -2*a(n-34) -7*a(n-35) for n>40
EXAMPLE
Some solutions for n=5
..0..0..1..1. .0..0..1..0. .0..1..1..0. .0..1..0..0. .0..1..0..0
..0..1..1..0. .0..1..0..0. .0..0..0..1. .0..1..1..0. .0..1..1..0
..0..1..1..0. .1..1..1..0. .1..0..0..1. .1..1..1..1. .1..1..1..0
..0..1..1..0. .1..1..1..1. .1..0..0..1. .0..1..1..1. .0..1..0..0
..0..1..1..1. .0..1..1..0. .0..0..1..1. .0..0..0..1. .0..0..1..0
CROSSREFS
Cf. A303896.
Sequence in context: A378031 A076542 A226842 * A305284 A304897 A316579
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 02 2018
STATUS
approved