The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303877 Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1). 2

%I

%S 3,0,1,1,0,2,1,1,1,0,0,2,0,2,2,1,1,3,0,0,0,1,0,2,0,0,0,2,1,0,2,2,2,2,

%T 1,2,2,1,2,0,2,0,1,2,1,2,0,2,0,0,0,0,0,1,2,2,2,2,1,2,1,0,1,2,0,0,0,0,

%U 2,2,1,1,0,0,2,2,1,0,0,2,0,0,1,0,1,0,2,2,1,0,0,1,1,0,2,2,0,2,2,0,2,0,2,1,1

%N Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1).

%C Using a simple greedy algorithm.

%C Apart from a leading 3 the same as A188921. - _R. J. Mathar_, May 07 2018

%H Simon Plouffe, <a href="http://vixra.org/pdf/1408.0193v1.pdf">Generalized expansion of real numbers</a>, 2006-2014

%e 1 = 0.30110211100202211300010200021022221221202..._{Pi}

%p r2bk:=proc(s, b)

%p local i, j, v, premier, fin, lll, liste, w, baz;

%p baz := evalf(b);

%p v := abs(evalf(s));

%p fin := trunc(evalf(Digits/log10(b))) - 10;

%p lll := [seq(baz^j, j = 1 .. fin)];

%p liste := [];

%p for i to fin do w := trunc(v*lll[i]); v := v - w/lll[i]; liste := [op(liste), w] end do;

%p RETURN(liste)

%p end;

%p # enter a real number s and a base b > 1; b can be a real number, too.

%Y Cf. A000796, A188921, A232325, A283735.

%K nonn,cons,base

%O 0,1

%A _Simon Plouffe_, May 02 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 23:08 EST 2020. Contains 331270 sequences. (Running on oeis4.)