

A303877


Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1).


2



3, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 2, 2, 1, 1, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 2, 1, 0, 1, 2, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Using a simple greedy algorithm.
Apart from a leading 3 the same as A188921.  R. J. Mathar, May 07 2018


LINKS

Table of n, a(n) for n=0..104.
Simon Plouffe, Generalized expansion of real numbers, 20062014


EXAMPLE

1 = 0.30110211100202211300010200021022221221202..._{Pi}


MAPLE

r2bk:=proc(s, b)
local i, j, v, premier, fin, lll, liste, w, baz;
baz := evalf(b);
v := abs(evalf(s));
fin := trunc(evalf(Digits/log10(b)))  10;
lll := [seq(baz^j, j = 1 .. fin)];
liste := [];
for i to fin do w := trunc(v*lll[i]); v := v  w/lll[i]; liste := [op(liste), w] end do;
RETURN(liste)
end;
# enter a real number s and a base b > 1; b can be a real number, too.


CROSSREFS

Cf. A000796, A188921, A232325, A283735.
Sequence in context: A309887 A317595 A263753 * A112743 A230427 A229995
Adjacent sequences: A303874 A303875 A303876 * A303878 A303879 A303880


KEYWORD

nonn,cons,base


AUTHOR

Simon Plouffe, May 02 2018


STATUS

approved



