login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303877 Expansion of 1 in base Pi, 1 = Sum_{n>=0} a(n)/Pi^(n+1). 2
3, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 2, 2, 1, 1, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 2, 1, 0, 1, 2, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Using a simple greedy algorithm.

Apart from a leading 3 the same as A188921. - R. J. Mathar, May 07 2018

LINKS

Table of n, a(n) for n=0..104.

Simon Plouffe, Generalized expansion of real numbers, 2006-2014

EXAMPLE

1 = 0.30110211100202211300010200021022221221202..._{Pi}

MAPLE

r2bk:=proc(s, b)

local i, j, v, premier, fin, lll, liste, w, baz;

    baz := evalf(b);

    v := abs(evalf(s));

    fin := trunc(evalf(Digits/log10(b))) - 10;

    lll := [seq(baz^j, j = 1 .. fin)];

    liste := [];

    for i to fin do w := trunc(v*lll[i]); v := v - w/lll[i]; liste := [op(liste), w] end do;

    RETURN(liste)

end;

# enter a real number s and a base b > 1; b can be a real number, too.

CROSSREFS

Cf. A000796, A188921, A232325, A283735.

Sequence in context: A309887 A317595 A263753 * A112743 A230427 A229995

Adjacent sequences:  A303874 A303875 A303876 * A303878 A303879 A303880

KEYWORD

nonn,cons,base

AUTHOR

Simon Plouffe, May 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)