login
A303757
a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A000010(k) = A000010(n), where A000010 is Euler totient function phi.
7
1, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 4, 1, 4, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 3, 2, 1, 5, 1, 3, 1, 6, 1, 7, 1, 4, 3, 5, 2, 8, 1, 4, 1, 4, 1, 9, 1, 3, 1, 5, 1, 10, 2, 2, 3, 2, 3, 5, 1, 4, 4, 6, 1, 6, 1, 2, 3
OFFSET
1,4
COMMENTS
Ordinal transform of f, where f(1) = 0 and f(n) = A000010(n) for n > 1.
After a(1)=1 and a(4)=2, the positions of the rest of records is given by A081375(n) = 6, 12, 30, 42, 72, 78, 84, 90, 190, ..., for n >= 3.
Apart from a(2) = 1, the other positions of 1's is given by A210719.
LINKS
FORMULA
Except for a(2) = 1, a(n) = A081373(n).
MATHEMATICA
With[{s = EulerPhi@ Range@ 105}, MapAt[# + 1 &, Table[Count[s[[2 ;; n]], _?(# == s[[n]] &)], {n, Length@ s}], 1]] (* Michael De Vlieger, Nov 23 2018 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
Aux303757(n) = if(1==n, 0, eulerphi(n));
v303757 = ordinal_transform(vector(up_to, n, Aux303757(n)));
A303757(n) = v303757[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 30 2018
STATUS
approved