login
A303697
Number T(n,k) of permutations p of [n] whose difference between sum of up-jumps and sum of down-jumps equals k; triangle T(n,k), n>=0, min(0,1-n)<=k<=max(0,n-1), read by rows.
6
1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 4, 5, 4, 5, 4, 1, 1, 11, 19, 19, 20, 19, 19, 11, 1, 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1, 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1, 1, 120, 1255, 3394, 4339, 4420, 4421, 4420, 4421, 4420, 4339, 3394, 1255, 120, 1
OFFSET
0,8
COMMENTS
An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
LINKS
FORMULA
T(n,0) = A153229(n) for n > 0.
T(n,1) = A005165(n-1) for n > 0.
T(n+1,n-1) = A000295(n).
T(n,k) = T(n,-k).
Sum_{k=0..n-1} k^2 * T(n,k) = A001720(n+2) for n>1.
EXAMPLE
Triangle T(n,k) begins:
: 1 ;
: 1 ;
: 1, 0, 1 ;
: 1, 1, 2, 1, 1 ;
: 1, 4, 5, 4, 5, 4, 1 ;
: 1, 11, 19, 19, 20, 19, 19, 11, 1 ;
: 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1 ;
: 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1 ;
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(-j), j=1..u)+
add(b(u+j-1, o-j)*x^( j), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(
`if`(n=0, 1, add(b(j-1, n-j), j=1..n))):
seq(T(n), n=0..12);
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1,
Sum[b[u-j, o+j-1] x^-j, {j, 1, u}] +
Sum[b[u+j-1, o-j] x^j, {j, 1, o}]]];
T[0] = {1};
T[n_] := x^n Sum[b[j-1, n-j], {j, 1, n}] // CoefficientList[#, x]& // Rest;
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *) *)
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 28 2018
STATUS
approved