This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303668 Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function. 4
 1, 2, 3, 5, 8, 12, 19, 30, 46, 71, 111, 172, 266, 413, 640, 991, 1537, 2383, 3692, 5722, 8869, 13745, 21303, 33018, 51172, 79308, 122917, 190503, 295251, 457597, 709207, 1099165, 1703546, 2640245, 4091988, 6341979, 9829132, 15233702, 23609994, 36592010, 56712212, 87895562 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of A023361. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..5254 Eric Weisstein's World of Mathematics, Jacobi Theta Functions FORMULA G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k*(k+1)/2))). MAPLE b:= proc(n) option remember; `if`(n=0, 1,       add(`if`(issqr(8*j+1), b(n-j), 0), j=1..n))     end: a:= proc(n) option remember;       `if`(n<0, 0, b(n)+a(n-1))     end: seq(a(n), n=0..50);  # Alois P. Heinz, Apr 28 2018 MATHEMATICA nmax = 41; CoefficientList[Series[1/((1 - x) (2 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, nmax}], x] nmax = 41; CoefficientList[Series[1/((1 - x) (1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}])), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 1, n}]/2; Accumulate[Table[a[n], {n, 0, 41}]] CROSSREFS Cf. A000217, A010054, A023361, A302835, A303667. Sequence in context: A240523 A023436 A024567 * A060961 A225393 A243850 Adjacent sequences:  A303665 A303666 A303667 * A303669 A303670 A303671 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 28 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)