login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303667 Expansion of 2/((1 - x)*(3 - theta_3(x))), where theta_3() is the Jacobi theta function. 4

%I

%S 1,2,3,4,6,9,13,18,25,36,52,74,104,147,209,297,421,596,845,1199,1701,

%T 2411,3417,4844,6868,9738,13806,19573,27749,39342,55778,79079,112112,

%U 158944,225342,319479,452941,642152,910404,1290719,1829911,2594344,3678108,5214606,7392970,10481335

%N Expansion of 2/((1 - x)*(3 - theta_3(x))), where theta_3() is the Jacobi theta function.

%C Partial sums of A006456.

%H Alois P. Heinz, <a href="/A303667/b303667.txt">Table of n, a(n) for n = 0..5000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%F G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k^2))).

%p b:= proc(n) option remember;

%p `if`(n=0, 1, add(b(n-i^2), i=1..isqrt(n)))

%p end:

%p a:= proc(n) option remember;

%p `if`(n<0, 0, b(n)+a(n-1))

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 28 2018

%t nmax = 45; CoefficientList[Series[2/((1 - x) (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x]

%t nmax = 45; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 1, nmax}])), {x, 0, nmax}], x]

%t a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 45}]]

%Y Cf. A000290, A006456, A010052, A302833, A303668.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Apr 28 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 19:02 EDT 2020. Contains 335473 sequences. (Running on oeis4.)