

A303656


Number of ways to write n as a^2 + b^2 + 3^c + 5^d, where a,b,c,d are nonnegative integers with a <= b.


17



0, 1, 1, 2, 1, 3, 2, 3, 2, 4, 3, 4, 2, 4, 4, 3, 2, 4, 4, 3, 2, 4, 3, 4, 1, 4, 5, 6, 4, 6, 5, 5, 6, 6, 5, 8, 4, 6, 6, 5, 4, 7, 5, 7, 5, 6, 4, 5, 3, 4, 7, 6, 7, 8, 5, 4, 7, 5, 5, 9, 3, 6, 5, 6, 4, 6, 5, 7, 7, 4, 5, 5, 5, 4, 6, 5, 6, 10, 5, 4, 5, 7, 4, 9, 2, 9, 8, 5, 6, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares, a power of 3 and a power of 5.
It has been verified that a(n) > 0 for all n = 2..2*10^10.
It seems that any integer n > 1 also can be written as the sum of two squares, a power of 2 and a power of 3.
The author would like to offer 3500 US dollars as the prize for the first proof of his conjecture that a(n) > 0 for all n > 1.  ZhiWei Sun, Jun 05 2018


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..100000
ZhiWei Sun, Refining Lagrange's foursquare theorem, J. Number Theory 175(2017), 167190.
ZhiWei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97120.
ZhiWei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 20172018.


EXAMPLE

a(2) = 1 with 2 = 0^2 + 0^2 + 3^0 + 5^0.
a(5) = 1 with 5 = 0^2 + 1^2 + 3^1 + 5^0.
a(25) = 1 with 25 = 1^2 + 4^2 + 3^1 + 5^1.


MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)(n>0&&g[n]);
tab={}; Do[r=0; Do[If[QQ[n3^k5^m], Do[If[SQ[n3^k5^mx^2], r=r+1], {x, 0, Sqrt[(n3^k5^m)/2]}]], {k, 0, Log[3, n]}, {m, 0, If[n==3^k, 1, Log[5, n3^k]]}]; tab=Append[tab, r], {n, 1, 90}]; Print[tab]


CROSSREFS

Cf. A000244, A000290, A000351, A001481, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303429, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303702, A303821.
Sequence in context: A007828 A070804 A303429 * A253630 A104481 A078709
Adjacent sequences: A303653 A303654 A303655 * A303657 A303658 A303659


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Apr 27 2018


STATUS

approved



