OFFSET
1,2
FORMULA
Following steps can be used in order to produce terms of this sequence.
(1) Take odd m, find z and k (see formula section of A292544).
(2) Represent phi(m) = 2^t*m', where m' is odd (i.e., m' = A053575(m)).
(3) For this m', find z' and k'.
(4) Solve z*i - k + t = z'*j - k' + 1 for positive i, j.
(5) Each such solution gives a term m*2^(z*i - k + 1) of this sequence.
For all x >= 0, 13*2^(12*x+7), 77*2^(60*x+17), 137*2^(136*x+35), 173*2^(1204*x+259), 193*2^(96*x+49), 269*2^(8844*x+6567), 411*2^(136*x+34), 519*2^(1204*x+258), 557*2^(38364*x+28635), 563*2^(19670*x+9836), 581*2^(2460*x+789), 641*2^(64*x+33), 653*2^(52812*x+39447), 667*2^(4620*x+3405), 769*2^(384*x+193), 807*2^(8844*x+6566) are terms of this sequence (m < 10^3 where m*2^(z*i - k + 1) is the corresponding form).
EXAMPLE
PROG
(PARI) isA292544(n) = Mod(2, n)^eulerphi(n)==eulerphi(n);
isok(n) = isA292544(n) && isA292544(eulerphi(n));
(PARI) { ZK(m) = my(z, k); z=znorder(Mod(2, m)); k=znlog(eulerphi(m), Mod(2, m)); if(type(k)!="t_INT", return()); [z, k]; }
{ getpowerof2(m) = my(m2, t, zk, zk2, r);
m2 = eulerphi(m);
t = valuation(m2, 2);
m2 \= 2^t;
if( m2==1, return(0));
zk=ZK(m);
zk2=ZK(m2);
if(!zk || !zk2, return());
r = [zk[1], zk2[1], zk[2]-t-zk2[2]+1]; \\ solving r[1] * i = r[2] * j + r[3]
r /= content(r);
if( gcd(r[1], r[2])>1, return());
((r[2]*lift(Mod(-r[3]/r[2], r[1])) + r[3])/r[1] + r[2]*x)*zk[1] - zk[2] + 1; } \\ getpowerof2(m) returns z*i - k + 1 with x parameter (see formula section), i.e., getpowerof2(13) returns 12*x+7, that is, 13*2^(12*x+7) is a term for all x >= 0.
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev and Altug Alkan, Apr 27 2018
STATUS
approved