This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303608 Repunit pseudoprimes: composite numbers n such that (10^n - 1)/9 == 1 (mod n). 2
 10, 55, 91, 259, 370, 385, 451, 481, 505, 703, 715, 1045, 1105, 1729, 2035, 2465, 2821, 2981, 3367, 4141, 4187, 5005, 5461, 6533, 6541, 6565, 6601, 7471, 7777, 8149, 8401, 8695, 8905, 8911, 10001, 10585, 11111, 12403, 13366, 13981, 14245, 14645, 14701, 14911, 15211, 15841, 18685 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Composite numbers n such that 10^n == 10 (mod 9n). If n is a term, then so is (10^n - 1)/9. Thus, the sequence is infinite. No terms are divisible by 3. - Robert Israel, May 28 2018 LINKS Robert Israel, Table of n, a(n) for n = 1..4130 EXAMPLE (10^10 - 1)/9 = 1111111111 == 1 (mod 10), so the composite 10 is a term. Equivalently, we have the congruence 10^10 == 10 (mod 9*10). MAPLE filter:=  n -> n mod 3 <> 0 and (10&^n - 10) mod n = 0\ and not isprime(n): select(filter, [\$4..10^5]); # Robert Israel, May 28 2018 MATHEMATICA Select[Range@ 20000, ! PrimeQ@# && PowerMod[10, #, 9 #] == 10 &] (* Robert G. Wilson v, Apr 28 2018 *) PROG (PARI) isok(n) = (n>1) && !isprime(n) && Mod(10, 9*n)^n == 10; \\ Michel Marcus, Apr 28 2018 CROSSREFS A000864 is a subsequence. Composite numbers in A067934. - Michel Marcus, Apr 27 2018 Sequence in context: A222539 A219623 A284757 * A139610 A088404 A119334 Adjacent sequences:  A303605 A303606 A303607 * A303609 A303610 A303611 KEYWORD nonn AUTHOR Thomas Ordowski, Apr 27 2018 EXTENSIONS a(4) onward from Robert G. Wilson v, Apr 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 22:49 EDT 2019. Contains 326314 sequences. (Running on oeis4.)