OFFSET
0,6
LINKS
Alois P. Heinz, Rows n = 0..20, flattened
Wikipedia, Derangement
EXAMPLE
T(5,0) = 5: 51234, 53124, 53214, 54123, 54213.
T(5,1) = 33: 21453, 21534, 23451, 23514, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34512, 34521, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45123, 45213, 51423, 51432, 53412, 53421, 54132, 54231.
T(5,2) = 6: 23154, 24153, 34152, 34251, 45132, 45231.
Triangle T(n,k) begins:
1;
0;
1;
1, 1;
3, 6;
5, 33, 6;
11, 152, 102;
21, 663, 1068, 102;
43, 2778, 9060, 2952;
85, 11413, 68250, 50796, 2952;
171, 46332, 477978, 679368, 131112;
341, 186867, 3192192, 7824834, 3349224, 131112;
683, 750878, 20648088, 81751824, 64791576, 8271792;
MAPLE
b:= proc(s, i, j) option remember; expand(`if`(s={}, 1, add(
`if`(k=nops(s), 0, b(s minus {k}, `if`(j>k, 0, j), k)*
`if`(i>0 and j>0 and i<j and j>k, x, 1)), k=s)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b({$1..n}, 0$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[s_, i_, j_] := b[s, i, j] = Expand[If[s == {}, 1, Sum[If[k == Length[s], 0, b[s ~Complement~ {k}, If[j > k, 0, j], k]*If[i > 0 && j > 0 && i < j && j > k, x, 1]], {k, s}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Max[0, Exponent[p, x]]}]][b[Range[n], 0, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 31 2018, from Maple *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 26 2018
STATUS
approved