This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303540 Number of ways to write n as a^2 + b^2 + binomial(2*c,c) + binomial(2*d,d), where a,b,c,d are nonnegative integers with a <= b and c <= d. 26
 0, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 6, 4, 2, 2, 4, 4, 2, 2, 5, 5, 5, 4, 4, 4, 4, 5, 6, 5, 5, 4, 5, 4, 4, 3, 4, 5, 5, 6, 5, 5, 5, 4, 7, 3, 4, 5, 6, 4, 2, 4, 6, 7, 4, 4, 5, 7, 6, 2, 5, 4, 6, 3, 2, 5, 5, 5, 4, 4, 3, 7, 9, 6, 5, 6, 11, 7, 3, 4, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares and two central binomial coefficients. It has been verified that a(n) > 0 for all n = 2..10^10. See also A303539 and A303541 for related information. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120. Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018. EXAMPLE a(2) = 1 since 2 = 0^2 + 0^2 + binomial(2*0,0) + binomial(2*0,0). a(10) = 2 with 10 = 2^2 + 2^2 + binomial(2*0,0) + binomial(2*0,0) = 1^2 + 1^2 + binomial(2*1,1) + binomial(2*2,2). a(2435) = 1 with 2435 = 32^2 + 33^2 + binomial(2*4,4) + binomial(2*5,5). MAPLE N:= 100: # for a(1)..a(N) A:= Vector(N): for b from 0 to floor(sqrt(N)) do   for a from 0 to min(b, floor(sqrt(N-b^2))) do     t:= a^2+b^2;     for d from 0 do       s:= t + binomial(2*d, d);       if s > N then break fi;       for c from 0 to d do         u:= s + binomial(2*c, c);         if u > N then break fi;         A[u]:= A[u]+1; od od od od: convert(A, list); # Robert Israel, May 30 2018 MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; c[n_]:=c[n]=Binomial[2n, n]; f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={}; Do[r=0; k=0; Label[bb]; If[c[k]>n, Goto[aa]]; Do[If[QQ[n-c[k]-c[j]], Do[If[SQ[n-c[k]-c[j]-x^2], r=r+1], {x, 0, Sqrt[(n-c[k]-c[j])/2]}]], {j, 0, k}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 80}]; Print[tab] CROSSREFS Cf. A000290, A000984, A001481, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303541, A303543, A303601, A303639. Sequence in context: A104377 A109337 A303539 * A137266 A062948 A096258 Adjacent sequences:  A303537 A303538 A303539 * A303541 A303542 A303543 KEYWORD nonn AUTHOR Zhi-Wei Sun, Apr 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 13:01 EDT 2019. Contains 328222 sequences. (Running on oeis4.)