%I #4 Apr 24 2018 10:20:03
%S 16,512,12340,306448,7626768,189837638,4726484016,117683035940,
%T 2930192820802,72959325822554,1816628170742222,45232591915361348,
%U 1126255602340846336,28042870875767777390,698245243223443816298
%N Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C Column 5 of A303456.
%H R. H. Hardin, <a href="/A303453/b303453.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 28*a(n-1) -39*a(n-2) -673*a(n-3) -7831*a(n-4) +13152*a(n-5) +196214*a(n-6) +926755*a(n-7) -893464*a(n-8) -13994255*a(n-9) -42382981*a(n-10) +17140014*a(n-11) +373492175*a(n-12) +928613637*a(n-13) +282111616*a(n-14) -4237524647*a(n-15) -11369471860*a(n-16) -9985248178*a(n-17) +17442507044*a(n-18) +68265116747*a(n-19) +92330842512*a(n-20) +22423267806*a(n-21) -143116781632*a(n-22) -290878306168*a(n-23) -279434051729*a(n-24) -76373597104*a(n-25) +207774325051*a(n-26) +383113678476*a(n-27) +283454896488*a(n-28) -87112543739*a(n-29) -438258232360*a(n-30) -394716978521*a(n-31) +18057578774*a(n-32) +316959155044*a(n-33) +214805036106*a(n-34) -28619190824*a(n-35) -94398747368*a(n-36) -23874979472*a(n-37) +20190067380*a(n-38) +12196646640*a(n-39) -1210063296*a(n-40) -2962657472*a(n-41) -765333392*a(n-42) +128606600*a(n-43) +62302928*a(n-44) -9578208*a(n-45) -3013216*a(n-46) +233600*a(n-47)
%e Some solutions for n=5
%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
%e ..0..0..1..1..0. .0..0..0..0..1. .0..0..1..0..1. .0..0..0..1..1
%e ..0..1..1..1..1. .1..0..1..0..0. .1..1..1..1..1. .1..0..1..1..0
%e ..1..1..1..0..0. .0..0..0..0..0. .0..0..1..0..1. .1..0..1..0..0
%e ..0..0..1..1..0. .0..0..1..0..1. .1..0..0..0..0. .1..1..0..0..0
%Y Cf. A303456.
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 24 2018