login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303389 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 5^c + 5^d, where a,b,c,d are nonnegative integers with a <= b and c <= d. 30
0, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 4, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 1, 5, 4, 3, 2, 5, 5, 5, 5, 3, 3, 5, 5, 4, 4, 4, 5, 5, 2, 5, 3, 5, 4, 7, 2, 4, 6, 6, 5, 4, 4, 5, 8, 4, 4, 4, 7, 6, 4, 3, 4, 8, 4, 7, 3, 3, 6, 8, 2, 5, 6, 5, 4, 6, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Conjecture: a(n) > 0 for all n > 1. In other words, any integers n > 1 can be written as the sum of two triangular numbers and two powers of 5.

This has been verified for all n = 2..10^10.

See A303393 for the numbers of the form x*(x+1)/2 + 5^y with x and y nonnegative integers.

See also A303401, A303432 and A303540 for similar conjectures.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..100000

Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.

Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.

Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.

EXAMPLE

a(4) = 1 with 4 = 1*(1+1)/2 + 1*(1+1)/2 + 5^0 + 5^0.

a(5) = 1 with 5 = 0*(0+1)/2 + 2*(2+1)/2 + 5^0 + 5^0.

a(7) = 1 with 7 = 0*(0+1)/2 + 1*(1+1)/2 + 5^0 + 5^1.

a(25) = 1 with 25 = 0*(0+1)/2 + 5*(5+1)/2 + 5^1 + 5^1.

MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

f[n_]:=f[n]=FactorInteger[n];

g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;

QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);

tab={}; Do[r=0; Do[If[QQ[4(n-5^j-5^k)+1], Do[If[SQ[8(n-5^j-5^k-x(x+1)/2)+1], r=r+1], {x, 0, (Sqrt[4(n-5^j-5^k)+1]-1)/2}]], {j, 0, Log[5, n/2]}, {k, j, Log[5, n-5^j]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]

CROSSREFS

Cf. A000217, A000351, A271518, A273812, A281976, A299924, A299537, A299794, A300219, A300362, A300396, A300441, A301376, A301391, A301471, A301472, A302920, A302981, A302982, A302983, A302984, A302985, A303233, A303234, A303235, A303338, A303363, A303393, A303401, A303432, A303540.

Sequence in context: A035191 A297167 A325224 * A276166 A177062 A133924

Adjacent sequences:  A303386 A303387 A303388 * A303390 A303391 A303392

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Apr 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 16:17 EDT 2019. Contains 328223 sequences. (Running on oeis4.)