login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303363 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c + 2^d, where a,b,c,d are nonnegative integers with a <= b, c <= d and 2|c. 32
0, 1, 2, 2, 3, 3, 2, 4, 6, 3, 5, 6, 4, 6, 7, 4, 4, 9, 6, 6, 8, 4, 9, 9, 5, 7, 7, 5, 7, 9, 4, 8, 13, 7, 6, 11, 7, 10, 13, 8, 9, 10, 7, 9, 11, 7, 9, 15, 8, 8, 14, 6, 9, 16, 6, 8, 11, 11, 10, 12, 8, 7, 15, 10, 8, 11, 9, 14, 15, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Conjecture: a(n) > 0 for all n > 1.

This is stronger than the author's conjecture in A303233. I have verified a(n) > 0 for all n = 2..10^9.

In contrast, Corcker proved in 2008 that there are infinitely many positive integers not representable as the sum of two squares and at most two powers of 2.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

R. C. Crocker, On the sum of two squares and two powers of k, Colloq. Math. 112(2008), 235-267.

Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.

Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.

Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.

EXAMPLE

a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^0.

a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + 2^0 + 2^0 = 0*(0+1)/2 + 0*(0+1)/2 + 2^0 + 2^1.

MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

f[n_]:=f[n]=FactorInteger[n];

g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;

QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);

tab={}; Do[r=0; Do[If[QQ[4(n-4^j-2^k)+1], Do[If[SQ[8(n-4^j-2^k-x(x+1)/2)+1], r=r+1], {x, 0, (Sqrt[4(n-4^j-2^k)+1]-1)/2}]], {j, 0, Log[4, n/2]}, {k, 2j, Log[2, n-4^j]}]; tab=Append[tab, r], {n, 1, 70}]; Print[tab]

CROSSREFS

Cf. A000079, A000217, A271518, A273812, A281976, A299924, A299537, A299794, A300219, A300362, A300396, A300441, A301376, A301391, A301471, A301472, A302920, A302981, A302982, A302983, A302984, A302985, A303233, A303234, A303235, A303338, A303389.

Sequence in context: A253900 A167618 A211707 * A045796 A127684 A036012

Adjacent sequences:  A303360 A303361 A303362 * A303364 A303365 A303366

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Apr 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 10:00 EDT 2019. Contains 321368 sequences. (Running on oeis4.)