login
A303349
Expansion of Product_{n>=1} 1/(1 - 9*x^n)^(1/3).
3
1, 3, 21, 138, 1029, 7878, 62751, 508521, 4185885, 34819986, 292135143, 2467528563, 20958538377, 178846047741, 1532203949982, 13171424183184, 113562780734352, 981679181808261, 8505577753517235, 73846557073784937, 642328501788394527
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = 9.
In general, if h > 1 and g.f. = Product_{k>=1} 1/(1 - h^2*x^k)^(1/h), then a(n) ~ h^(2*n) / (Gamma(1/h) * QPochhammer[1/h^2]^(1/h) * n^(1 - 1/h)). - Vaclav Kotesovec, Apr 22 2018
LINKS
FORMULA
a(n) ~ c * 3^(2*n) / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer[1/9]^(1/3)) = 0.390040743840141117482137514... - Vaclav Kotesovec, Apr 22 2018
MAPLE
seq(coeff(series(mul(1/(1-9*x^k)^(1/3), k = 1..n), x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 22 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - 9*x^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
CROSSREFS
Expansion of Product_{n>=1} 1/(1 - b^2*x^n)^(1/b): A000041 (b=1), A067855 (b=2), this sequence (b=3).
Cf. A303348.
Sequence in context: A079753 A346935 A137969 * A337467 A318041 A054419
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2018
STATUS
approved