login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303349 Expansion of Product_{n>=1} 1/(1 - 9*x^n)^(1/3). 3
1, 3, 21, 138, 1029, 7878, 62751, 508521, 4185885, 34819986, 292135143, 2467528563, 20958538377, 178846047741, 1532203949982, 13171424183184, 113562780734352, 981679181808261, 8505577753517235, 73846557073784937, 642328501788394527 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = 9.

In general, if h > 1 and g.f. = Product_{k>=1} 1/(1 - h^2*x^k)^(1/h), then a(n) ~ h^(2*n) / (Gamma(1/h) * QPochhammer[1/h^2]^(1/h) * n^(1 - 1/h)). - Vaclav Kotesovec, Apr 22 2018

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

FORMULA

a(n) ~ c * 3^(2*n) / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer[1/9]^(1/3)) = 0.390040743840141117482137514... - Vaclav Kotesovec, Apr 22 2018

MAPLE

seq(coeff(series(mul(1/(1-9*x^k)^(1/3), k = 1..n), x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 22 2018

MATHEMATICA

nmax = 20; CoefficientList[Series[Product[1/(1 - 9*x^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)

CROSSREFS

Expansion of Product_{n>=1} 1/(1 - b^2*x^n)^(1/b): A000041 (b=1), A067855 (b=2), this sequence (b=3).

Cf. A303348.

Sequence in context: A141041 A079753 A137969 * A318041 A054419 A228115

Adjacent sequences:  A303346 A303347 A303348 * A303350 A303351 A303352

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Apr 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)