login
A303293
Array read by antidiagonals: T(m,n) = number of minimum total dominating sets in the grid graph P_m X P_n.
7
0, 1, 1, 2, 4, 2, 1, 1, 1, 1, 1, 16, 2, 16, 1, 4, 9, 1, 1, 9, 4, 3, 1, 3, 16, 3, 1, 3, 1, 64, 4, 256, 256, 4, 64, 1, 2, 16, 4, 4, 160, 4, 4, 16, 2, 9, 1, 9, 121, 25, 25, 121, 9, 1, 9, 4, 169, 12, 2916, 268, 144, 268, 2916, 12, 169, 4
OFFSET
1,4
COMMENTS
The minimum size of a total dominating set is the total domination number A300358(m, n).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..435 (first 29 antidiagonals)
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
EXAMPLE
Table begins:
===============================================
m\n| 1 2 3 4 5 6 7 8 9
---+-------------------------------------------
1 | 0 1 2 1 1 4 3 1 2 ...
2 | 1 4 1 16 9 1 64 16 1 ...
3 | 2 1 2 1 3 4 4 9 12 ...
4 | 1 16 1 16 256 4 121 2916 25 ...
5 | 1 9 3 256 160 25 268 4225 510 ...
6 | 4 1 4 4 25 144 529 2025 10404 ...
7 | 3 64 4 121 268 529 4 441 630 ...
8 | 1 16 9 2916 4225 2025 441 256 9 ...
9 | 2 1 12 25 510 10404 630 9 1364 ...
...
CROSSREFS
Rows 1..2 are A302654, A303054.
Main diagonal is A303142.
Sequence in context: A201316 A105023 A279315 * A344637 A201558 A052285
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 20 2018
STATUS
approved