OFFSET
1,3
COMMENTS
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 1 with 2 - 2^0 - 2^0 = 0*(0+1)/2 + 0*(0+1)/2.
a(3) = 2 with 3 - 2^0 - 2^0 = 0*(0+1)/2 + 1*(1+1)/2 and 3 - 2^0 - 2^1 = 0*(0+1)/2 + 0*(0+1)/2.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; Do[If[QQ[4(n-2^k-2^j)+1], r=r+1], {k, 0, Log[2, n]-1}, {j, k, Log[2, n-2^k]}]; tab=Append[tab, r], {n, 1, 60}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 20 2018
STATUS
approved